Ma

KEY STAGE

3-5

2000

Mathematics test

Paper 1

Calculator not allowed

Last name

School

Remember

- The test is 1 hour long.
- You must not use a calculator for any question in this test.
- You will need: pen, pencil, rubber and a ruler.
- This test starts with easier questions.
- Try to answer all the questions.
- Write all your answers and working on the test paper do not use any rough paper. Marks may be awarded for working.
- Check your work carefully.
- Ask your teacher if you are not sure what to do.

For marker's use only

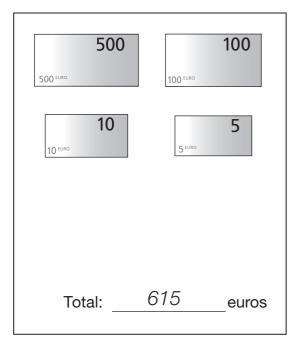
TOTAL MARKS

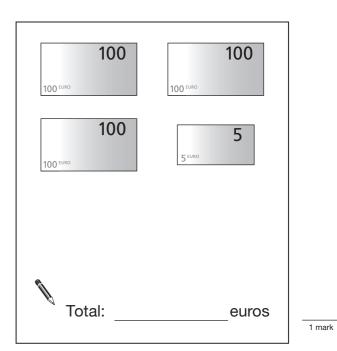
Instructions

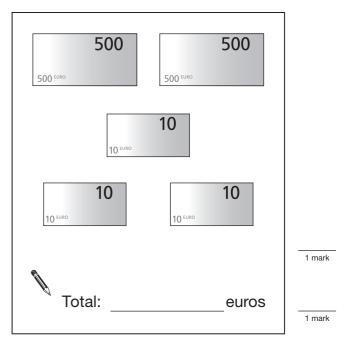
Answers

This means write down your answer or show your working and write down your answer.

Calculators

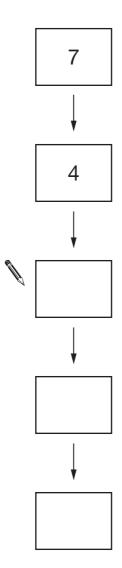

You **must not** use a calculator to answer any question in this test.


KS3/07/Ma/Tier 3–5/P1 2


1. This question is about money called euros.

Write the total number of euros in each box.

The first one is done for you.



2. A sequence of numbers decreases by 3 each time.

Write the missing numbers in the sequence below.

You can use the number line on the right to help you.

3. Here is part of the 36 times table.

$$1 \times 36 = 36$$
 $2 \times 36 = 72$
 $3 \times 36 = 108$
 $4 \times 36 = 144$
 $5 \times 36 = 180$
 $6 \times 36 = 216$
 $7 \times 36 = 252$
 $8 \times 36 = 288$
 $9 \times 36 = 324$
 $10 \times 36 = 360$

Use the 36 times table to help you work out the missing numbers.

1 mark

1 mark

1 mark

Sourced from SATs-Papers.co.uk

4. The table shows feeding times for some animals in a zoo.

	Start	of feeding t	Length of feeding times	
Elephants	11:15am	2:15pm	3:20pm	15 minutes
Giraffes	12:20pm	2:30pm		15 minutes
Otters	1:00 pm			10 minutes
Seals	1:00 pm	4:00 pm		10 minutes
Tigers	2:30 pm			30 minutes

	<i>,</i> ,	_						
1	(a)	The first	teeding	time to	or giraffes	starts	at 12:201	nm
١	u,	1110 1110	rocarrig	tillio i	or giranico	otal to	at 12.20	9111

At what time does it finish?

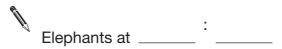
1 mark

(b) One feeding time **finishes** at 3:00 pm.

Which animal's feeding time is this?

1 mark

(c) A visitor arrives at the zoo at 1:45pm.


How many minutes later does the next feeding time for **elephants** start?

(d) A different visitor arrives at the zoo at 12:30 pm.

She wants to watch feeding times for elephants, otters and seals that day.

Write three feeding times that she could watch.

Otters at _____ : ____

Seals at _____ : ____

1 mark

5. Work out

1 mark

6. In America, there are coins each worth 25 cents.

These coins are called **quarters** because four of them make one dollar.

(a) Altogether, how many quarters make 3 dollars?

1 mark

(b) Laura has 20 quarters.

How many dollars is that?

1 mark

(c) Dev wants to change **10 dollars** into quarters.

How many quarters should he get?

8

7.	(a)	Tick (✓) all the n	umbers below	that divide by 5	with no remaind	der.	
		12	15	16	20	30	1 mark
	(b)	Tick (✓) all the n	umbers below [.]	that divide by 3	with no remaind	der.	
		12	15	16	20	30	1 mark
	(c)	Tick (✓) all the n	umbers below:	that divide by 1 /	5 with no remain	nder	
	(0)	riok (v) all the h		mat divide by it		1001.	

16

20

30

1 mark

12

15

8. The table shows the approximate populations of five different places.

Place	Approximate population
London	7 000 000
Sheffield	700 000
Harrogate	70 000
Ash Vale	7 000
Binbrook	700

(a)	Which o	of the places	has a	population	of about	seventy	thousand?
-----	---------	---------------	-------	------------	----------	---------	-----------

1 mark

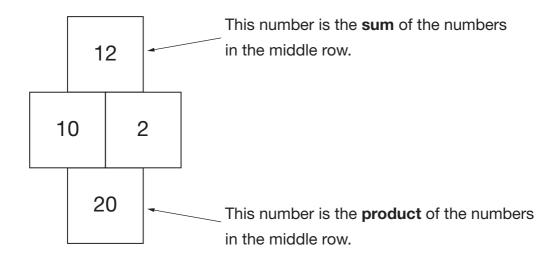
(b) Use the table to complete these sentences.

The population of **Harrogate** is about **10 times** as big as

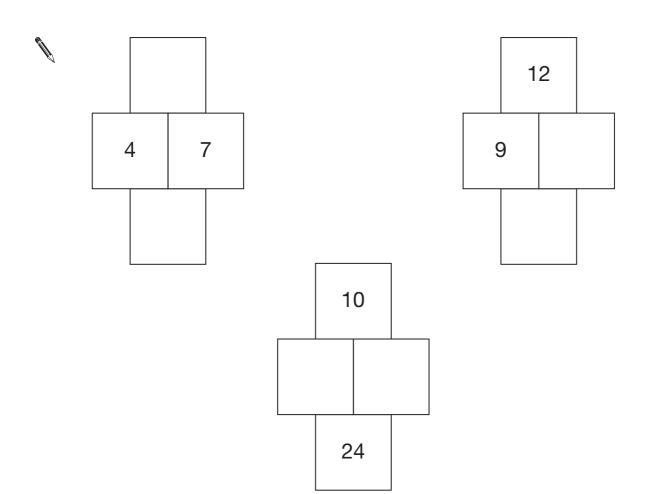
the population of _____

The population of ______ is about **100 times** as big as

the population of **Harrogate**.

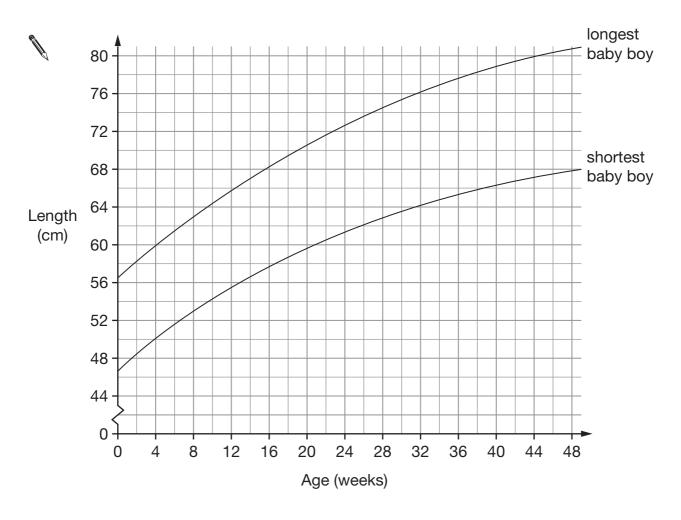

The population of **Sheffield** is about ______ **times** as big as

2 marks


the population of Ash Vale.

Sourced from SATs-Papers.co.uk

9. Here are the rules for a number grid.


Use the rules to write the missing numbers in these number grids.

KS3/07/Ma/Tier 3–5/P1 11

10. The lengths of babies are measured at different ages.

The graph shows the longest and shortest a baby boy is likely to be.

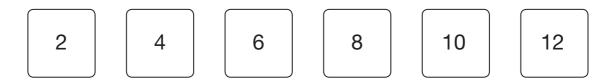
(a) Write the missing numbers below.

A baby boy is 8 weeks old.

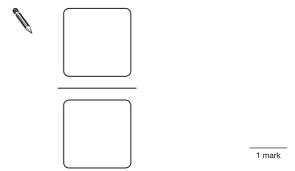
The **longest** he is likely to be is about _____ cm.

1 mark

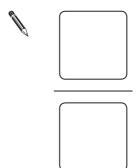
The **shortest** he is likely to be is about _____ cm.


12

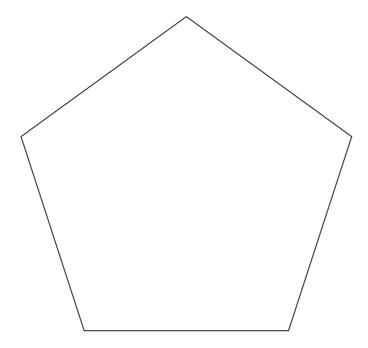
1 mark


(b) A **34 week** old baby boy is **72cm** long.

Put a cross on the graph to show this information.


11. Here are six number cards.

(a) Choose two of these six cards to make a fraction that is equivalent to $\frac{1}{3}$



(b) Choose two of these six cards to make a fraction that is greater than $\frac{1}{2}$ but less than 1

12. The shape below is a regular pentagon.

All five sides are exactly the same length.

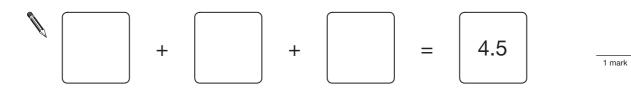
Measure accurately one of the sides, then work out the **perimeter** of the pentagon.

1 mark

mark

Perimeter = cm

13. (a)	A three-digit number is a multiple of 4	
	What could the number be?	
	Give an example.	
	Now give a different example.	
		 1 mark
(b)	A two-digit number is a factor of 100	
	What could the number be?	
	Give an example.	
		1 mark
		Than
	Now sive a different everyle	
	Now give a different example.	
		 1 mark


1 mark

14. (a) Write the answer to this calculation.

(b) Now write a number in each box to make this calculation correct.

The three numbers must be the **same**.

15. Sam says:

The **only** four-sided shape with four right angles is a square.

Is Sam correct?

Explain your answer.

1 mark

Sourced from SATs-Papers.co.uk

16. (a)	When $x = 8$, what is the value of $5x$? Tick (\checkmark) the correct box below.								
	5 13 40 58 None of these								
(b)	When $x = 8$, what is the value of $3x - x$? Tick (\checkmark) the correct box below.								
	0 3 16 30 None of these								
(c)	When $x = 8$, what is the value of x^2 ? Tick (\checkmark) the correct box below.								
	8 10 16 64 None of these								

17. Lisa uses a grid to multiply 23 by 15

×	20	3
10	200	30
5	100	15

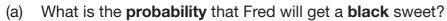
$$200 + 100 + 30 + 15 = 345$$

Answer: 345

Now Lisa multiplies two different numbers.

Complete the grid, then give the answer below.

×		40	3
30			
	600		18


Ø	Answer:	

18.	Frad	hae a	had	of	sweets
10.	rrea	nas a	pad	OI	sweets

Contents

- 3 yellow sweets
- 5 green sweets
- 7 red sweets
- 4 purple sweets
- 1 black sweet

He is going to take a sweet from the bag at random.

1 mark

(b) Write the missing **colour** in the sentence below.

The probability that Fred will get a _____ sweet is $\frac{1}{4}$

19

19. Write a number in each box to make the calculations correct.

1 mark

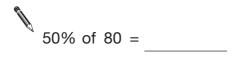
1		
_	=	-8

1 mark

20. A rectangle has an area of 24 cm²

How long could the sides of the rectangle be?

Give three different examples.



____ cm and ____ cn

_____ cm and ____ cm

_____ cm and ____ cn

21. (a) Write the missing numbers.

2 marks

(b) Work out 56% of 80You can use part (a) to help you.

22. Look at this equation.

$$y = 2x + 10$$

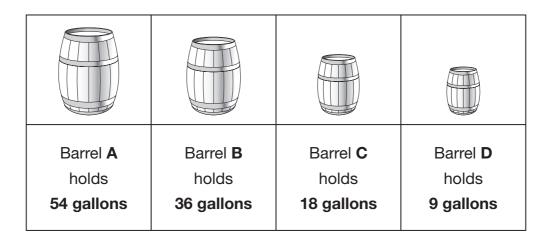
When x = 4, what is the value of y?

1 mark

(b) When x = -4, what is the value of y?

1 mark

Which equation below gives the **same** value of y for both x = 4 and x = -4? Put a ring round the correct equation.


$$y = 2x$$

$$y = 2x \qquad \qquad y = 2 + x \qquad \qquad y = x^2 \qquad \qquad y = \frac{x}{2}$$

$$y = x^2$$

$$y = \frac{x}{2}$$

23. The diagram shows four different sized barrels.

Write the missing fractions as simply as possible.

The first one is done for you.

	1	
Barrel C holds	$\frac{\overline{2}}{2}$	of the amount barrel B holds.

	Barrel D holds	of the amount barrel B holds

23

END OF TEST