Write your name here	
Surname	Other names
In the style of:	Centre Number Candidate Number
Edexcel GCSE	
Mathema	tics A
I T T T T T T T T T T T T T T T T T T T	LICS A
	tion of Curves Higher Tier
Transforma	tion of Curves Higher Tier
	tion of Curves Higher Tier

Instructions

- Use **black** ink or ball-point pen.
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer all questions.
- Answer the questions in the spaces provided
 there may be more space than you need.
- Calculators must not be used.

Information

- The total mark for this paper is 100
- The marks for each question are shown in brackets
 use this as a guide as to how much time to spend on each question.
- Questions labelled with an asterisk (*) are ones where the quality of your written communication will be assessed.

Advice

- Read each question carefully before you start to answer it.
- Keep an eye on the time.
- Try to answer every question.
- Check your answers if you have time at the end.

1.

The diagram shows part of the curve with equation y = f(x)

The minimum point of the curve is at (2,-1)

(a) Write down the coordinates of the minimum point of the curve with equation

(i)
$$y = f(x - 2)$$

(ii)
$$y = 2f(x)$$

(iii)
$$y = f(2x)$$

The curve y = f(x) is reflected in the y axis.

(b) Find the equation of the curve following this transformation.

$$y = \frac{F(-\infty)}{(1)}$$

The curve with equation y = f(x) has been transformed to give the curve with equation y = f(x) + 2

(c) Describe the transformation.

(Total 5 marks)

2.

The diagram shows part of the curve with equation y = f(x). The coordinates of the maximum point of this curve are (2, 3).

Write down the coordinates of the maximum point of the curve with equation

(a)
$$y = f(x - 2)$$

(b)
$$y = 2f(x)$$

(Total 2 marks)

3. The diagram shows a sketch of the curve $y = \sin x^{\circ}$ for $0 \le x \le 360$

QUADRANT GUIDE TO
ILLUSTRATE WHERE TRIGONOMETRIC
RATIOS ARE POSITIVE (+VE).

COS + Ve

The exact value of $\sin 60^\circ = \frac{\sqrt{3}}{2}$

(a) Write down the exact value of

(i)
$$\sin 120^{\circ}$$
, $\sin 300^{\circ}$. $\sin 120^{\circ}$, $\sin 300^{\circ}$. $\sin 300^{\circ}$. $\sin 300^{\circ}$.

kan + ve

$$-\frac{\sqrt{3}}{2}$$
(2)

$$\sin x = -\sin(360 - x)$$

=> $\sin 300^\circ = -\sin(360 - 300) = -\sin(60^\circ = -\frac{\sqrt{3}}{2}$

(b) On the grid below, sketch the graph of $y = 3 \sin 2x^{\circ}$ for $0 \le x \le 360$

(2)

(Total 4 marks)

4.

The curve with equation y = f(x) is translated so that the point at (0, 0) is mapped onto the point (2, 0).

(a) Find an equation of the translated curve.

$$y = F(x - 2)$$

The grid shows the graph of $y = \cos x^{\circ}$ for values of x from 0 to 540

(b) On the grid, sketch the graph of $y = 3\cos(2x^{\circ})$ for values of x from 0 to 540

(2)

(Total 4 marks)

5. This is a sketch of the curve with the equation y = f(x). The only minimum point of the curve is at P(3, -4).

(a) Write down the coordinates of the minimum point of the curve with the equation y = f(x - 2)

(b) Write down the coordinates of the minimum point of the curve with the equation y = f(x + 5) + 6

$$(-2, 2)$$

6. The graph of y = f(x) is shown on the grid.

The graph N is a translation of the graph of y = f(x).

(a) Write down in terms of f, the equation of graph N

$$y = \frac{\int \left(\int (1)^2 (1)^2 dt \right)}{\int (1)^2 dt}$$

The graph of y = f(x) has a maximum point at (-4, 3).

(b) Write down the coordinates of the maximum point of the graph of y = f(-x).

(Total 3 marks)

- 7. The graph of y = f(x) is shown on each of the grids.
 - (a) On this grid, sketch the graph of y = f(x 2)

(2)

Lots more free papers at www.bland.in

(b) On this grid, sketch the graph of y = 2f(x)

(Total 4 marks)

