nber	
nber	
nber	
Γier	
Paper Reference	
Η)	
Marks	

Instructions

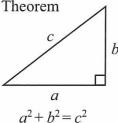
- Use **black** ink or ball-point pen.
- Fill in the boxes at the top of this page with your name, centre number and candidate number.
- Answer all questions.
- Without sufficient working, correct answers may be awarded no marks.
- Answer the questions in the spaces provided
 there may be more space than you need.
- Calculators may be used.
- You must NOT write anything on the formulae page.
 Anything you write on the formulae page will gain NO credit.

Information

- The total mark for this paper is 100.
- The marks for **each** question are shown in brackets
 - use this as a guide as to how much time to spend on each question.

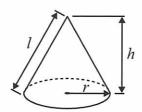
Advice

- Read each question carefully before you start to answer it.
- Check your answers if you have time at the end.

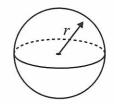

P 4 0 6 1 3 A 0 1 2 4

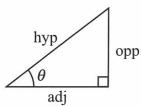
Turn over ▶

PEARSON


International GCSE MATHEMATICS FORMULAE SHEET – HIGHER TIER

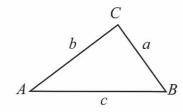
Pythagoras' Theorem


Volume of cone = $\frac{1}{3}\pi r^2 h$


Curved surface area of cone = πrl

Volume of sphere = $\frac{4}{3}\pi r^3$

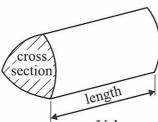
Surface area of sphere = $4\pi r^2$

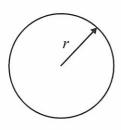


 $adj = hyp \times cos \theta$ $opp = hyp \times sin \theta$ $opp = adj \times tan \theta$

$$or \qquad \sin \theta = \frac{\text{opp}}{\text{hyp}}$$
$$\cos \theta = \frac{\text{adj}}{\text{hyp}}$$

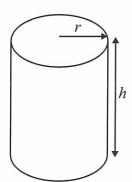
$$\tan \theta = \frac{\text{opp}}{\text{adj}}$$


In any triangle ABC


Sine rule: $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$

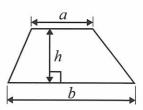
Cosine rule: $a^2 = b^2 + c^2 - 2bc \cos A$

Area of triangle = $\frac{1}{2} ab \sin C$



Volume of prism = area of cross section \times length

Circumference of circle = $2\pi r$


Area of circle = πr^2

Volume of cylinder = $\pi r^2 h$

Curved surface area of cylinder = $2\pi rh$

Area of a trapezium = $\frac{1}{2}(a+b)h$

The Quadratic Equation The solutions of $ax^2 + bx + c = 0$, where $a \ne 0$, are given by

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Answer ALL TWENTY TWO questions.

Write your answers in the spaces provided.

You must write down all the stages in your working.

1 Work out the value of $\frac{6.7 - 2.5}{2.8 \times 0.4}$

Give your answer as a decimal.

3.75

(Total for Question 1 is 2 marks)

2 An aeroplane flew from Qatar to Bahrain.

The distance flown was 135 km.

The average speed was 180 km/h.

Work out the time taken.

Give your answer in minutes.

$$S = \frac{d}{t}$$

=>
$$t = \frac{d}{s} = \frac{135}{180} = 0.75 \,\text{hrs}$$
 or 45 minutes

45 minutes

(Total for Question 2 is 3 marks)

3 Solve 7x - 5 = 3x + 2Show your working clearly.

$$4x - 5 = 2$$

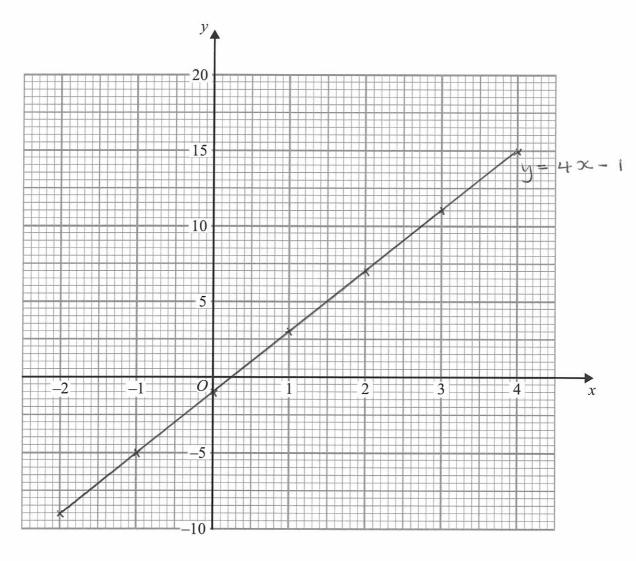
$$\Rightarrow x = \frac{2+5}{4} = \frac{7}{4} = 1\frac{3}{4} \text{ or } 1.75$$

(Total for Question 3 is 3 marks)

4 Three positive whole numbers have a median of 7 and a mean of 5 Find the range of these three numbers.

Mean =
$$\frac{\sum x_1 + 7 + x_3}{5}$$
 = 5

$$\Rightarrow x_1 + 7 + x_3 = 15$$


where $x_1 \leq 7 \leq x_3$ and x_1, x_3 are integers.

Since X3 < 8, oc, must be 7.

$$\therefore x_1 = 1 \text{ and } x_3 = 7$$

(Total for Question 4 is 3 marks)

5 On the grid, draw the graph of y = 4x - 1 from x = -2 to x = 4

(Total for Question 5 is 4 marks)

6 (a) There are 32 students in a class.

All the students are either left-handed or right-handed.

The ratio of the number of left-handed students to the number of right-handed students is 1:7

Work out the number of right-handed students.

$$\frac{7}{8}$$
 x 32 = $\frac{32}{8}$ x 7 = 4 x 7 = 28

<u>28</u>

(b) Sajid makes a scale model of a lorry.

He uses a scale of 1:32

The length of Sajid's model lorry is 45 cm.

Chitra makes a scale model of the same lorry.

She uses a scale of 1:72

Work out the length of Chitra's model lorry.

$$\frac{45 \times 32}{72} = 20 \text{ cm}$$

(3) cm

(Total for Question 6 is 5 marks)

7 Express 200 as a product of powers of its prime factors.

$$200 = 2 \times 100$$

$$= 2 \times 2 \times 50$$

$$= 2 \times 2 \times 2 \times 25$$

$$= 2 \times 2 \times 2 \times 5 \times 5$$

$$2^3 \times 5^2$$

(Total for Question 7 is 3 marks)

$$8 \quad \frac{y^3 \times y^n}{y} = y^6$$

Find the value of n.

=>
$$y^{(3+n-1)} = y^6$$

=> $y^{(2+n)} = y^6$

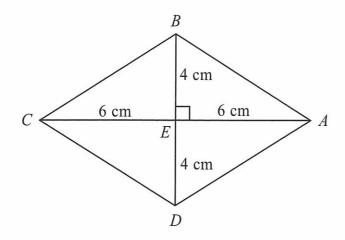


Diagram **NOT** accurately drawn

ABCD is a rhombus.

The diagonals AC and BD cross at the point E.

$$AE = CE = 6$$
 cm.

$$BE = DE = 4$$
 cm.

Angle
$$AEB = 90^{\circ}$$

(a) Work out the area of the rhombus.

Area of rhombus =
$$\frac{1}{2} \times \text{the product of the diagonals}$$

= $\frac{1}{2} \times \text{AC} \times \text{BD}$
= $\frac{1}{2} \times 12 \times 8$
= 48 cm^2 $\frac{48}{3} \text{ cm}^2$

(b) Work out the length of AB.

Give your answer correct to 3 significant figures.

$$AB = \sqrt{(^2 + 4^2)} = \sqrt{52}$$

= 7.21 cm (3 s.f.).

7·21 cm

(Total for Question 9 is 6 marks)

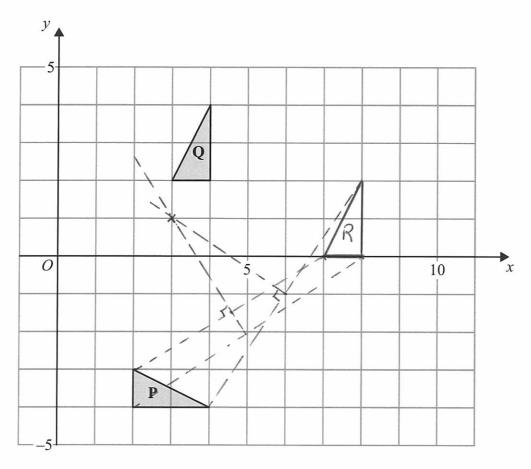
10 (i) Solve the inequalities $-6 < 4x \le 8$

$$-\frac{6}{4}$$
 $< \propto \leq \frac{8}{4}$

(ii) n is an integer.

Write down all the values of *n* which satisfy $-6 < 4n \le 8$

$$n = -1, 0, 1, 2$$



(Total for Question 10 is 4 marks)

11 (a) Find the Highest Common Factor (HCF) of 75 and 90

(b) Find the Lowest Common Multiple (LCM) of 75 and 90

(Total for Question 11 is 4 marks)

(a) Describe fully the single transformation which maps triangle P onto triangle Q.

A rotation of 90° anti-clockwise about the point

(3)

(b) On the grid, translate triangle **Q** by the vector $\begin{pmatrix} 4 \\ -2 \end{pmatrix}$ Label the new triangle **R**.

(1)

(c) Describe fully the single transformation which maps triangle ${\bf P}$ onto triangle ${\bf R}$.

A rotation of 90° anti-clockwise about the point

(2)

(Total for Question 12 is 6 marks)

13 (a) Find the gradient of the line with equation 3x + 4y = 10

$$30c + 4y = 10$$
=> $4y = -30c + 10$
and $y = -\frac{3}{4}xc + 2.5$
... Gradient = $-\frac{3}{4}$

$$-\frac{3}{4}$$
 (3)

(b) Find the coordinates of the point of intersection of the line with equation 3x + 4y = 10 and the line with equation 5x - 6y = 23 Show your working clearly.

$$3x + 4y = 10 \dots 0$$

 $5x - 6y = 23 \dots 2$

Substitute $y = -\frac{3}{4}x + \frac{5}{2}$ from part a into equation 2.

Then
$$5x - 6\left(-\frac{3}{4}x + \frac{5}{2}\right) = 23$$

$$\Rightarrow$$
 $5x + \frac{18}{4}x - 15 = 23$

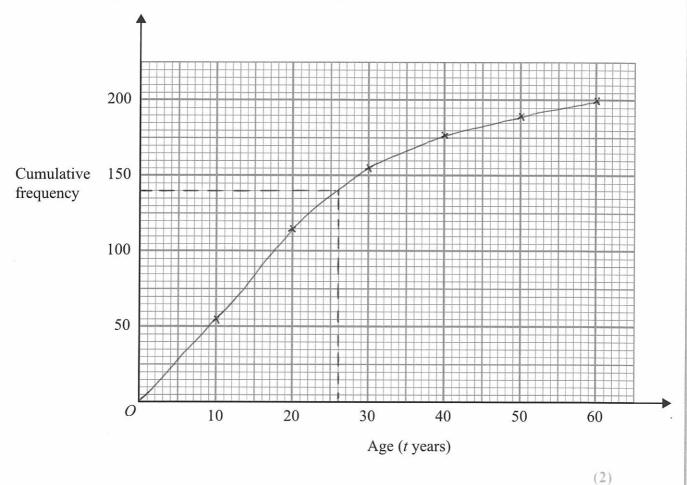
$$\Rightarrow \frac{19}{2}x = 38$$

$$36 \times 2 = 4$$

(Total for Question 13 is 8 marks)

14 The grouped frequency table gives information about the ages of 200 elephants.

Age (t years)	Frequency
$0 < t \leqslant 10$	55
$10 \le t \le 20$	60
$20 < t \leqslant 30$	40
$30 < t \le 40$	22
40 < <i>t</i> ≤ 50	13
50 < <i>t</i> ≤ 60	10


(a) Complete the cumulative frequency table.

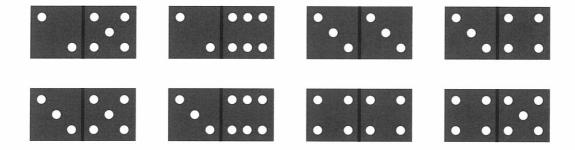
Age (t years)	Cumulative frequency
$0 < t \leqslant 10$	55
$0 < t \leqslant 20$	115
$0 < t \leqslant 30$	155
$0 < t \leqslant 40$	177
$0 < t \leqslant 50$	190
0 < <i>t</i> ≤ 60	200

(1)

(b) On the grid, draw a cumulative frequency graph for your table.

(c) Use the graph to find an estimate for the number of elephants with ages of more than 26 years.

6 (2)


(Total for Question 14 is 5 marks)

15 Solve the inequality $x^2 < 16$

-42x<4

(Total for Question 15 is 2 marks)

16 Here are 8 dominoes.

The 8 dominoes are put in a bag.

Riaz takes at random a domino from the bag.

(a) Find the probability that he takes a domino with a total of 8 spots or a domino with a total of 9 spots.

<u>S</u>

Helima takes at random 2 dominoes from the bag of 8 dominoes without replacement.

- (b) Work out the probability that
 - (i) the total number of spots on the two dominoes is 18

$$P(18 \text{ spots}) = P(9 \text{ AND } 9) = \frac{2}{8} \times \frac{1}{7}$$

= $\frac{2}{56} = \frac{1}{28}$

28

(ii) the total number of spots on the two dominoes is 17

$$P(17-spots) = P(9 \text{ and } 8 \text{ DR } 8 \text{ and } 9)$$

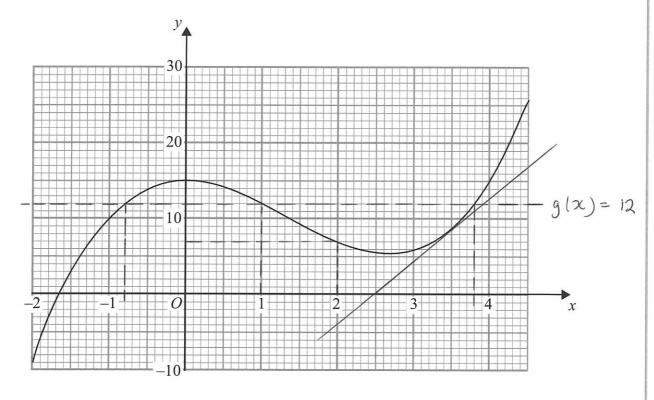
$$= \left(\frac{2}{8} \times \frac{3}{7}\right) + \left(\frac{3}{8} \times \frac{2}{7}\right)$$

$$= \frac{6}{56} + \frac{6}{56} = \frac{12}{56} = \frac{3}{14}$$

3 14

(Total for Question 16 is 7 marks)

$$f(x) = \sqrt{x - 6}$$


(a) Find f(10)

(1)

(b) State which values of x must be excluded from a domain of f

x < 6

The diagram shows part of the graph of y = g(x)

(c) Find g(2)

7

(d) Find fg(0)
$$g(0) = 15$$

 $= 5 - 6 = 50 = 6 = 50 = 3$

(e) One of the solutions of g(x) = k, where k is a number, is x = 1

Find the other solutions.

Give your answers correct to 1 decimal place.

(f) Find an estimate for the gradient of the curve at the point where x = 3.5 Show your working clearly.

Gradient of tangent to curve at x = 3.5 is given

by
$$\frac{\Delta y}{\Delta x} \propto \frac{\delta y}{\delta x} \sim \frac{y_2 - y_1}{x_2 - x_1} = \frac{17 - 0}{4.5 - 2.5} = \frac{17}{2}$$

= 8.5

(Total for Question 17 is 12 marks)

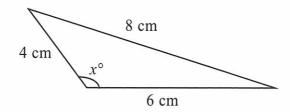


Diagram **NOT** accurately drawn

Calculate the value of *x*. Give your answer correct to 1 decimal place.

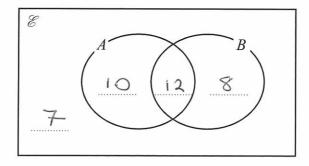
$$8^2 = 6^2 + 4^2 - 2(6)(4) \cos x$$

$$=>$$
 48 cos $>$ = $6^2 + 4^2 - 8^2 = -12$

$$= \cos'(\frac{-12}{48}) = \cos'(\frac{-1}{4}) = 104.5°(1d.p.)$$

(Total for Question 18 is 3 marks)

19 A and B are two sets.


$$n(\mathscr{E}) = 37$$

$$n(A) = 22$$

$$n(A \cap B) = 12$$

$$n(A \cup B) = 30$$

(a) Complete the Venn Diagram to show the **numbers** of elements.

(2)

(b) Find (i) $n(A \cap B')$

(ii) $n(A' \cup B')$

25

(Total for Question 19 is 4 marks)

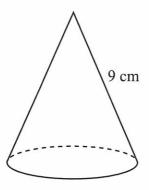


Diagram **NOT** accurately drawn

A solid cone has a slant height of 9 cm. The **curved** surface area of the cone is 100 cm².

Calculate the volume of the cone. Give your answer correct to 3 significant figures.

Volume of cone =
$$\frac{1}{3} \pi r^2 h$$

Curved surface area of cone = $\pi r l = 100$
=> $9 \pi r = 100$ and $r = \frac{100}{9 \pi}$
Height of cone, h, is given by $\sqrt{9^2 - \left(\frac{100}{9 \pi}\right)^2}$
:. Volume of cone = $\frac{1}{3} \pi \left(\frac{100}{9 \pi}\right)^2 \sqrt{9^2 - \left(\frac{100}{9 \pi}\right)^2}$
= $108 \text{ cm}^3 \left(3 \text{ s.f.}\right)$.

108 cm³

(Total for Question 20 is 5 marks)

21 (a) Simplify $(16y^8)^{\frac{3}{4}}$

$$16^{\frac{3}{4}}y^{(8\times\frac{3}{4})} = (4\sqrt{16})^3y^{(24/4)}$$

$$= 2^3y^6 = 8y^6$$

8y6 (2)

(b) Given that $2^p \times 8^q = 2^n$

express
$$n$$
 in terms of p and q .

$$\Rightarrow$$
 $2^{p} \times 2^{3q} = 2^{n}$

$$=$$
 $2^{(p+3q)} = 2^{n}$

$$n = P + 3 Q$$
 (2)

(Total for Question 21 is 4 marks)

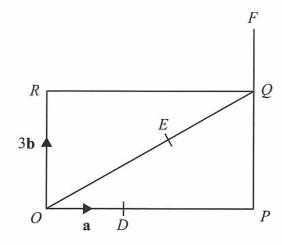


Diagram **NOT** accurately drawn

OPQR is a rectangle.

D is the point on OP such that $OD = \frac{1}{3} OP$.

E is the point on OQ such that $OE = \frac{2}{3} OQ$.

PQF is the straight line such that $QF = \frac{1}{3} PQ$.

$$\overrightarrow{OD} = \mathbf{a}$$
 $\overrightarrow{OR} = 3\mathbf{b}$

- (a) Find, in terms of a and b,
 - (i) \overrightarrow{OQ}

$$\overrightarrow{OQ} = \overrightarrow{OR} + \overrightarrow{RQ} = 3b + 3a$$

36+3a

(ii) \overrightarrow{OE}

$$\vec{OE} = \frac{2}{3} \vec{OQ} = \frac{2}{3} (36 + 3a)$$

2b+2a

(iii) \overrightarrow{DE}

$$\overrightarrow{DE} = \overrightarrow{DO} + \overrightarrow{OE} = -a + 2b + 2a$$

$$= a + 2b$$

a+2b

(b) Use a vector method to prove that *DEF* is a straight line.

$$\overrightarrow{DP} = \frac{2}{3} \overrightarrow{OP} = \frac{2}{3} (3a) = 2a$$

$$\vec{p}\vec{F} = \frac{1}{3}\vec{p}\vec{q} = \frac{1}{3}(3b) = b$$

$$= 2(a+2b)$$

Since DF is a scalar multiplier of DE (i.e. same direction but Just twice the size of DE in this instance) then DEF is a straight line.

(2)

(Total for Question 22 is 5 marks)

TOTAL FOR PAPER IS 100 MARKS

BLANK PAGE