Write your name here		
Surname	Other nan	nes
In the style of:	Centre Number	Candidate Number
Edexcel GCSE		
	4 .	
Mathema	tics A	
Mathema Circle Theor		Higher Tier
	ems	Higher Tier Paper Reference
Circle Theor	ems	

Instructions

- Use black ink or ball-point pen.
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer all questions.
- Answer the questions in the spaces provided
 there may be more space than you need.
- Calculators must not be used.

Information

- The total mark for this paper is 100
- The marks for each question are shown in brackets
 use this as a guide as to how much time to spend on each question.
- Questions labelled with an asterisk (*) are ones where the quality of your written communication will be assessed.

Advice

- Read each question carefully before you start to answer it.
- Keep an eye on the time.
- Try to answer every question.
- Check your answers if you have time at the end.

Turn over

1. *ABCD* is a cyclic quadrilateral within a circle centre *O*.

XY is the tangent to the circle at A.

Angle
$$XAB = 58^{\circ}$$

Angle
$$BAD = 78^{\circ}$$

Angle
$$DBC = 34^{\circ}$$

Diagram **NOT** accurately drawn

Prove that AB is parallel to CD.

Since alternate angles between two parallel lines are equal, AB must be parallel to CD.

Lots more free papers at www.bland.in

2.(a) Here is a circle with centre O.

Diagram **NOT** accurately drawn

Write down the value of x.

52 degrees (1)

(b) Here is a different circle.

Diagram **NOT** accurately drawn

Write down the value of y.

28 degrees

(1)

Diagram **NOT** accurately drawn

- U, V and W are points on the circumference of a circle, centre
- O. UW is a diameter of the circle.
- (a) (i) Write down the size of angle UVW.

90

(ii) Give a reason for your answer.

Lines drawn from either end of a diameter to a point on the circumference form a right-angle where they meet.

(2)

Diagram **NOT** accurately drawn

X, Y and Z are points on the circumference of a circle, centre O. Angle $XOZ = 140^{\circ}$.

(b) (i) Work out the size of angle XYZ.

70

(ii) Give a reason for your answer.

The angle subtended by an arc at the centre of a circle

is twice the angle Subtended by the same arc at any other point on the circumference (Double angle theorem) (2)

Lots more free papers at www.bland.in

(Total 4 marks)

*4.

Diagram **NOT** accurately drawn

X, Y and Z are points on the circumference of a circle, centre O. WX and WZ are tangents to the circle.

Angle $ZWX = 60^{\circ}$

Work out the size of angle *XYZ*. Give a reason for each stage in your working.

02W = 0 xw = 90° - A radius and tangent of a circle form a right-angle at their point of contact on the circumference.

 \times \hat{O} Z = 120° given by 360 - 2(90) - 60 = 120Since angles of a quadrilateral must add to 360° .

Finally, $X\hat{Y}Z = 60^{\circ}$ — Double angle theorem.

The angle subtended by arc|chord XZ at the centre, O, must be twice the size of the angle (Total 4 marks)

Subtended by arc XZ at Y - a point on the circumference and in the same segment as O with regards to chord Lots more free papers at www.bland.in XZ.

tangent of radius D form a right-angle through point of contact.

The diagram shows a circle centre O.

A, B and C are points on the circumference.

DCO is a straight line.

DA is a tangent to the circle.

Angle $ADO = 38^{\circ}$

(a) Work out the size of angle AOD.

52 ·

(b) (i) Work out the size of angle ABC.

26 .

(ii) Give a reason for your answer.

Double angle theorem - See answer to q 3.6. ii
For full explanation of double angle theorem. (3)
(Total 5 marks)

Diagram **NOT** accurately drawn

In the diagram, A, B, C and D are points on the circumference of a circle, centre O. Angle $BAD=60^{\circ}$.

Angle $BOD = x^{\circ}$.

Angle $BCD = y^{\circ}$.

(a) (i) Work out the value of x.

14			1		6	2)		4	-)	4)							
X	_							:													

(ii) Give a reason for your answer.

Double	angle	theorem	95	per	answer	FO
9.3.6						
						(2)

(b) (i) Work out the value of y.

(ii) Give a reason for your answer.

		^	1.	
Opposite	angles	of a	cyclic	quadrilateral
	9	•••••		
add to	180°			
		•••••		••••••
				(2)

(Total 4 marks)

A, B and C are points on the circumference of a circle, centre O. The line SAT is the tangent at A to the circle.

$$CB = AB$$
.
Angle $ATP = 60^{\circ}$.

Calculate the size of angle *OAB*. Give a reason for each stage in your working.

ABC = CAS = 58° — Angle in the opposite segment is equal, i.e. the angle between a chord and a tangent is the same as the angle subtended by the same chord in the opposite segment.

BÂC = AĈB = 180-58 = 61° — Base angles of an isosceles triangle are equal.

OAB = 58+61-90 = 29° - The angle between tangent SAT and radius DA must be 90°

29 °

(Total 5 marks)

Diagram **NOT** accurately drawn

A, B, C and D are points on the circumference of a circle.

Angle $ABD = 54^{\circ}$.

Angle $BAC = 28^{\circ}$.

(i) Find the size of angle ACD.

54 .

(ii) Give a reason for your answer.

The angles subtended by an are at points on the circumference in the same segment must be equal.

(Total 2 marks)

Diagram **NOT** accurately drawn

WX is a diameter of a circle.

Y is a point on the circle.

Z is the point inside the circle such that ZX = XY and XZ is parallel to YW.

Find the size of angle XZY.

You must give reasons for your answer.

WYX = 90° — Lines drawn from either end of a diameter to a point on the circumference form a right-angle where they meet.

ZXY = 90° - Interior angles between two parallel lines add to 180°

(Total 4 marks)

Triangle XYZ is an isosceles triangle.

Angles of any triangle add to 180° and base angles of an isosceles triangle are equal.

10. ABCD is a cyclic quadrilateral. AE is a tangent at A. CDE is a straight line. Angle $CAD = 32^{\circ}$ Angle $ABD = 40^{\circ}$

Work out the size of angle *AED*, marked *x*, on the diagram. You **must** show your working. Give reasons for any angles you work out.

$$DAE = 40^{\circ}$$
 — Angle in the apposite segment theorem.
 $DC = 180 - 72 - 40 = 68^{\circ}$ — Angles of a triangle add to

68 degrees

(Total 5 marks)

Diagram **NOT** accurately drawn

W, X, Y and Z are points on a circle, centre O. XY = YZ. Angle $XYZ = 130^{\circ}$.

(a) Write down the size of angle *XWZ*. Give a reason for your answer.

 $\chi \hat{W} = 180 - 130 = 50^{\circ}$ Since opposite angles of a cyclic quadrilateral add to 180°

(b) Work out the size of angle *OZY*. Give reasons for your answer.

XÔZ = 2(50) = 100° - Double-angle theorem.

As O is the centre, both DX and DZ represent the radius of the circle, i.e. DX = DZ. Also XY = YZ, as indicated and 30 DXYZ is a quadrilateral known more specifically as a kite.