Centre Number	Candidate Number
Surname	
Other Names	
Candidate Signature	

General Certificate of Secondary Education Higher Tier March 2013

Mathematics

43601H

Unit 1

Thursday 28 February 2013 1.30 pm to 2.30 pm

Н

For Examiner's Use

Examiner's Initials

Mark

Pages

2 - 3

4 - 5

6 - 7

8 - 9

10 - 11

12 - 13

14 - 15

TOTAL

For this paper you must have:

- a calculator
- mathematical instruments.

Time allowed

• 1 hour

Instructions

- Use black ink or black ball-point pen. Draw diagrams in pencil.
- Fill in the boxes at the top of this page.
- · Answer all questions.
- You must answer the questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- Do all rough work in this book.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 54.
- The quality of your written communication is specifically assessed in Questions 1, 2 and 4. These questions are indicated with an asterisk (*)
- You may ask for more answer paper and graph paper. These must be tagged securely to this answer booklet.

Advice

In all calculations, show clearly how you work out your answer.

Answer all questions in the spaces provided.

1 The points scored by 20 teams in a competition are shown.

25	33	36	23	35
24	50	37	26	46
48	35	51	28	39
30	48	33	44	25

*1 (a) Show this data on an ordered stem-and-leaf diagram. Remember to complete the key.

1 (b)	Teams that score more than 25 points stay in the competition.
	What percentage of the teams stay in the competition?
	16 x 100 = 80 %
	20
	Answer % (2 marks)

Turn over for the next question

Turn over ▶

2 (b)	Draw a line of best fit on your scatter graph.	(1 mark)
*2 (c)	What type of correlation is shown?	
	Answer Negative correlation	(1 mark)
2 (d)	Matthew is organising a game at the school fayre.	
	Each player will be given 10 attempts to throw a ball into a bucket. He wants the average number in the bucket to be 5.	
	Use your line of best fit to decide how far the bucket should be from each play	ver.
	Answer metres	(2 marks)

Turn over for the next question

6

Turn over ▶

3 The table shows the Geography and History grades of 100 students.

Geography

ŀ	Нi	S	tc	or	У

	D	С	В	Α	A *
D	3	5	1	2	0
С	6	8	4	3	1
В	3	9	5	9	2
Α	2	3	8	10	3
A *	0	2	4	5	2

3 (a)	How many students have at least one grade A* in these subjects?
	Answer
3 (b)	How many students have a higher grade in Geography than in History? I have circled the relevant numbers to be added.
	Answer 42 Students (2 marks)

4 Class A had a spelling test of ten words. The table shows their marks.

Class A

Mark	Frequency	Mark x Freq!
5	4	20
6	2	12
7	8	56
8	10	80
9	6	54
	Total = 30	Total = 222

4	(a)	Show that the	mean	mark	is	7.4
---	-----	---------------	------	------	----	-----

Mean =	I FOL	-	222	=	7.4	
	IF		30			

(3 marks)

*4 (b) Class B had the same test.
The mean mark for Class B is 6.5

The teacher says,

"On average, Class A scored 15% higher than Class B."

Is she correct?

You must show your working.

Percentage increase is given by:
$$\frac{7.4 - 6.5}{6.5} \times 100 = 13.8\% (3 s.f.).$$
6.5 : She is incorrect.

(3 marks)

A bag contains only red counters and blue counters. There are 6 **more** red than blue.

A counter is chosen at random from the bag.

The probability it is blue is $\frac{1}{4}$

How many red counters are in the bag?

$$R = B + 6 \implies B = R - 6$$

$$P(B) = R-6 = R-6 = 1$$

 $R+R-6 = 2R-6 = 4$

$$=$$
 $+R-24=2R-6=$ $2R=18$

$$=$$
 $R = \frac{18}{2} = 9$

Girls and boys are timed in a race.The box plot shows information about the times for the girls.

- 25% of the boys take 12 seconds or less
- The interquartile range for the boys is the same as for the girls
- The ratio of median times is girls: boys = 8:7

Complete the box plot for boys on the grid below. The times for the fastest and slowest boys have been plotted for you.

Boys

(4 marks)

7

Turn over ▶

7 The table shows information about the lengths of 200 bananas.

Length, l (cm)	Frequency
5 < <i>l</i> ≤ 10	12
10 < <i>l</i> ≤ 15	48
15 < <i>l</i> ≤ 20	70
20 < <i>l</i> ≤ 25	60
25 < <i>l</i> ≤ 30	10

_	nulative quency
	12
	60
1	30
ı	90
2	500

7 (a) Complete the cumulative frequency column.

(1 mark)

7 (b) Draw a cumulative frequency diagram for the data.

7 (c) A shop only buys bananas with lengths between 16 cm and 22 cm.

Estimate the fraction of the 200 bananas that the shop buys.

164-72	1.000 1000	92	_	46	 23	
200		200		100	 50	
	• • • • • • • • • • • • • • • • • • • •	•••••			 	

Turn over for the next question

7

Turn over ▶

- 8 A travel company sells holidays.
- 8 (a) The company sold 1072 UK holidays in 2012. It expects the number it sells to increase by 12% each year.

Work out the number of UK holidays the company expects to sell in 2014.

$$1072 + 0.12(1072) = 1200.64$$

 $1200.64 + 0.12(1200.64) = 1345$ (to nearest integer)
ALTERNATIVELY, $1072 \times 1.12^2 = 1345$ (to nearest integer)

8 (b) The company wants to survey 500 customers, stratified by country visited.

Complete the table.

	UK	Spain	France	Italy	Total
Number of customers	1072	2392	316	220	4000
Number in sample	134	299	40	27	500

9 Jack and Lucy each spin this fair 10-sided spinner once.

Key: G = green B = blue

Jack wins if their colours are the same. Lucy wins if their colours are different.

Who has the better chance of winning? You must show your working.

$$P(Jack wins) = P(Same colour) = P(GG or BB)$$

$$= P(G) \times P(G) + P(B) \times P(B) = \frac{16}{10}^2 + \frac{14}{10}^2$$

$$= \frac{36}{100} + \frac{16}{100} = \frac{52}{100} = \frac{26}{50} = \frac{13}{25}$$

$$P(Lucy wins) = P(different colour) = 1 - P(Same colour)$$

$$= 1 - \frac{26}{50} = \frac{24}{25} = \frac{12}{25} : Jack has greater chance$$

$$= 1 - \frac{26}{50} = \frac{24}{25} : Jack has greater chance$$

$$= 1 - \frac{26}{50} = \frac{24}{25} : Jack has greater chance$$

$$= 1 - \frac{26}{50} = \frac{24}{25} : Jack has greater chance$$

$$= 1 - \frac{26}{50} = \frac{24}{25} : Jack has greater chance$$

$$= 1 - \frac{26}{50} = \frac{24}{25} : Jack has greater chance$$

$$= 1 - \frac{26}{50} = \frac{24}{25} : Jack has greater chance$$

$$= 1 - \frac{26}{50} = \frac{24}{25} : Jack has greater chance$$

$$= 1 - \frac{26}{50} = \frac{24}{25} : Jack has greater chance$$

$$= 1 - \frac{26}{50} = \frac{24}{25} : Jack has greater chance$$

$$= 1 - \frac{26}{50} = \frac{24}{25} : Jack has greater chance$$

$$= 1 - \frac{26}{50} = \frac{24}{25} : Jack has greater chance$$

$$= 1 - \frac{26}{50} = \frac{24}{25} : Jack has greater chance$$

$$= 1 - \frac{26}{50} = \frac{24}{25} : Jack has greater chance$$

$$= 1 - \frac{26}{50} = \frac{24}{25} : Jack has greater chance$$

$$= 1 - \frac{26}{50} = \frac{24}{25} : Jack has greater chance$$

$$= 1 - \frac{26}{50} = \frac{24}{50} : Jack has greater chance$$

$$= 1 - \frac{26}{50} = \frac{24}{50} : Jack has greater chance$$

$$= 1 - \frac{26}{50} = \frac{24}{50} : Jack has greater chance$$

$$= 1 - \frac{26}{50} = \frac{24}{50} : Jack has greater chance$$

$$= 1 - \frac{26}{50} = \frac{24}{50} : Jack has greater chance$$

$$= 1 - \frac{26}{50} = \frac{24}{50} : Jack has greater chance$$

$$= 1 - \frac{26}{50} = \frac{24}{50} : Jack has greater chance$$

Turn over ▶

9

10 The histogram shows information about the distances 600 people travel to work.

10 (a) How many people travel more than 20 miles to work?

F.D	=	F	À	=>	F	=	F.D	X	C.W.
and the same of th									

(2 marks)

density

10 (b)	224 of these	people travel	further to	work than I do.
--------	--------------	---------------	------------	-----------------

Estimate the distance I travel to work.

$$F_{10-20} = 8 \times 10 = 80$$
 and $\frac{80-24}{80} \times (20-10) + 10$

ALTERNATIVELY, We need 24 more people to the left of the

Answer miles (4 marks)

A shelf supports 80 kg, to the nearest kilogram.

Bottles weigh 1.4 kg each, to the nearest tenth of a kilogram.

Work out the greatest number of bottles that can definitely be supported by the shelf.

Let B.S. = No. of bottles supportable by the Shelf.

W = Weight that can be supported by the Shelf and

B = Weight of each bottle. Then B.S. =
$$\frac{W}{B}$$

B.S. = $\frac{WE}{BU}$ = $\frac{79.5}{1.4.5}$ = 54.8 (3s.f.), which has to be

Answer 54 (4 marks)

END OF QUESTIONS

WMP/Mar13/43601H

