Centre Number	Candidate Number
Surname	
Other Names	
Candidate Signature	

General Certificate of Secondary Education Higher Tier March 2013

Mathematics

43603H

Unit 3

Wednesday 6 March 2013 9.00 am to 10.30 am

For this paper you must have:

- a calculator
- mathematical instruments.

Time allowed

• 1 hour 30 minutes

Instructions

- Use black ink or black ball-point pen. Draw diagrams in pencil.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- Do all rough work in this book.
- If your calculator does not have a π button, take the value of π to be 3.14 unless another value is given in the question.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 80.
- The quality of your written communication is specifically assessed in Questions 6 and 15. These questions are indicated with an asterisk (*).
- You may ask for more answer paper, graph paper and tracing paper.
 These must be tagged securely to this answer booklet.

Advice

In all calculations, show clearly how you work out your answer.

Formulae Sheet: Higher Tier

Area of trapezium = $\frac{1}{2}(a+b)h$

Volume of prism = area of cross-section \times length

Volume of sphere =
$$\frac{4}{3}\pi r^3$$

Surface area of sphere = $4\pi r^2$

Volume of cone =
$$\frac{1}{3} \pi r^2 h$$

Curved surface area of cone = $\pi r l$

In any triangle ABC

Area of triangle = $\frac{1}{2}ab \sin C$

Sine rule
$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

Cosine rule $a^2 = b^2 + c^2 - 2bc \cos A$

The Quadratic Equation

The solutions of $ax^2 + bx + c = 0$, where $a \ne 0$, are given by

$$x = \frac{-b \pm \sqrt{(b^2 - 4ac)}}{2a}$$

Answer all questions in the spaces provided.

1 (a) Translate this T-shape so that point *A* moves to point *B*.

(1 mark)

1 (b) Describe the translation.

A translation by the vector $\begin{pmatrix} -5 \\ -6 \end{pmatrix}$

(2 marks)

2 The perimeter of this L-shape is 56 cm.

Not drawn accurately

Set up and solve an equation to work out the value of x.

$$\Rightarrow x = \frac{56}{16} = \frac{3}{27} = 3.5$$

x =3 · 5

Give your answer to 1 decimal place.

C =	27	 =	2111	4.2)	 010 (cm	(1d.	ρ.).
				,	 			<i>y</i>

26.4 cm (3 marks)

3

(4 marks)

4 The diagram shows a triangle *ABC* with sides extended.

Not drawn accurately

Work out the value of x.

ACB = 48° — Vertically opposite angles are BAC = 180 - (100 + 48) = 180 - 148 equal.

= 32° — Angles of a triangle add to 180° $x = 180 - 32 = 148^{\circ}$ since angles across a straight line add to 180°

Turn over for the next question

5 The diagram shows three rods.

Not drawn accurately

Two of the rods are the same length.

Work out the **three** possible values for *x*.

$$00 + 4 = 11 \Rightarrow 00 = 11 - 4 = 7$$

$$3x-7=11 \implies x=11+7=18=6$$

$$3x - 7 = x + 4$$

$$=$$
 2x-7 = 4

$$\Rightarrow x = 4 + 7 = \frac{11}{2} = 5.5$$

Answer 1
$$x = \frac{7}{}$$

Answer 2
$$x = \frac{6}{x}$$

Answer 3
$$x = 5.5$$
 (5 marks)

*6 Here are two bottles of the same perfume.

Normal price £40

20% off

£55

Which is the better value? You **must** show your working.

40 - 20% of 40 = 40 - 8 = £32

One way to compare the prices like-for-like is to Scale-up the price of the small bottle in proportion with its volume until you have its price per 80ml.

 $32 \times \frac{80}{50} = 32 \times \frac{8}{5} = \frac{256}{5} = £51.20$ Small bottle is better value. (6 marks)

11

7 (a)	The scale on a map is 1:250 000
	What is the actual distance represented by 1 centimetre? Give your answer in kilometres.
	1m = 100 cm and 1km = 1000m 50
	1km = 100,000 cm. 250,000 = 2.5 km
	Answer
7 (b)	The scale on a different map is 1 inch represents 4 miles. A road on the map measures 6 inches to the nearest inch.
	What is the shortest possible distance of the road?
	Lowerbound of distance of road is given
	by 5.5 x 4 = 22 miles.
	Answer 2 miles (3 marks)

8 Work out the length AC.

Not drawn accurately

$\sqrt{13^2+6.5^2}$		3 s. f.)	-

Turn over for the next question

9

Turn over ▶

9 The diagram shows a rectangular sheet of paper *ABCD*.

Not drawn accurately

Corner *B* is folded to meet side *AD* as shown.

Not drawn accurately

Work out the angle marked x on the diagram.

BEFC is a kite which is made up of two congruent triangles BCE and EFC

FCE = ECB = 180-(90+70) = 180-160

= 20° since angles of a triangle add to 180°

DC = 90-40 = 50°

Answer degrees

(4 marks)

Use trial and improvement to find a solution to $x^3 - 20x = 60$ Give your answer to 1 decimal place.

x	$x^3 - 20x$	Comment
5	25	Too small
6	96	too big
5.5	56.375	too Small
5.6	63.616	too big
5.55	59.953875	too Small
∴ 5.55 < x <	5.6 & 500	c = 5.6 (1d.p.).

(4 marks)

8

11 (a) The diagram shows a circle, centre O.

Not drawn accurately

Work out the value of x.

(1 mark) degrees

11 (b) The diagram shows a cyclic quadrilateral.

Not drawn accurately

Work out the value of *y*.

44+4=	180°	Since opp	osite angles
0 0	of a	cyclic quo	drilateral add
=> 57=180	=>> > =	180 = 36°	to 180°

Answer degrees (2 marks) 12

Not drawn accurately

The man is 1.8 metres tall.

Work out the height of the building, marked h on the diagram. Give your answer to a suitable degree of accuracy.

•		,		
h = 40	o tangs° t	-1.8 =	29.8m	(3s.f.).
,	Answer	29.8	(3 : metres	S · (·) · (5 marks)

Turn over for the next question

8

Turn over ▶

13	here are two similar rectangles.

Not drawn accurately

15 cm

Work out the area of the larger rectangle.

15 x	$(3 \times \frac{3}{1})$	= 15	X 4.5	= 67.5	$-cm^2$
				•••••	

OR	Area o	Flanger	= Area	of small	er x 15/2
=> A.	= 30	0			(10)
= 2	170_	(2)		4	
	4	2			•••••••••••

Answer	67.5	 cm ²	(5 marks)
7 11101101		ОП	(U IIIai No)

14 The cylindrical tank is one-quarter full of oil.

1 litre = 1000 cm^3

The radius of the base of the cylinder is 90 cm. The height of the cylinder is 200 cm.

Work out the number of litres of oil in the tank.

Volume of cylinder = $\pi r^2 h = \pi (90^2)(200)$
= 1,620,000 T cm3 (or 1.62 × 106 T cm3)
Volume of oil = 1 x 1,620,000 TT
= 405,000 TT cm3
405,000T - 405T Litres
1000 or 1272.35 litres (2d.p.).
, , , , , , , , , , , , , , , , , , ,
Answer

9

*15 AB is a tangent to the circle.

Write down the value of x. Give a reason for your answer.

Answer	43	degrees
		acg.ccc

Reason. The angle in the opposite segment is equal.

(2 marks)

i.e. the angle between a chord and a tangent is

equal to the angle Subtended by the same

chord at any other point on the circumference

in the opposite segment.

16 Use the quadratic formula to solve

$$6x^2 + 5x - 3 = 0$$

Give your answers to 2 decimal places.

$$x = -b \pm \sqrt{b^2 - 4ac}$$

 $= -5 \pm \sqrt{5^2 - 4(6)(-3)}$

2(6)

 $= -5 \pm \sqrt{97}$

= 0.40 (2d.p.) or -1.24 (2d.p.).

.....

Answer 0.40 and -1.24 (3 marks)

Turn over for the next question

Turn over ▶

17 The diagram shows a rhombus inside a regular pentagon.

Work out the value of x.

For any regular n-sided polygon, exterior angle Also, angles of any quadrilateral add to 360° and 3 6 degrees

(4 marks)

18 (a) Here are four equations connecting y and x. k is a constant.

$$y = kx$$

$$y = \frac{k}{x}$$

$$y = \frac{k}{x} \qquad \qquad y = kx^2$$

$$y = \frac{k}{x^2}$$

Match each equation to its statement.

y is **directly** proportional to x

Equation
$$S = kx$$

y is **directly** proportional to x^2

Equation
$$y = kx^2$$

y is **inversely** proportional to x

Equation
$$S = \frac{k}{\infty}$$

y is **inversely** proportional to x^2

Equation
$$S = \frac{k}{x^2}$$

(2 marks)

18 (b) y is **inversely** proportional to x. When x = 3, y = 8

Work out the value of y when x = 5

$$y \propto \frac{1}{x} \implies y = \frac{R}{x} \implies R = yx = 8(3) = 24$$

So $y = \frac{24}{x}$

When
$$x = 5$$
, $y = \frac{24}{5} = 4\frac{4}{5}$ or 4.8

Answer 9 = 4.8

(3 marks)

19 (a) A sphere has radius 3x cm.

Write down an expression for the surface area of the sphere in terms of π and x. Give your answer in its simplest form.

Surface area of sphere = $4\pi \Gamma^2 = 4\pi (3x)^2$ = $4\pi (9x^2) = 36\pi x^2$

19 (b) A cone has base radius 3x cm and slant height l cm.

The curved surface area of the cone is equal to the surface area of the sphere.

Express l in terms of x. Give your answer in its simplest form.

Curved surface area of cone = $\pi rl = 3\pi x l$

 $= > l = 36\pi x^2 = 12x$

∴ L = 12 x

l = 12% (2 marks)

Turn over for the next question

20 The diagram shows vectors $\overrightarrow{OA} = \mathbf{a}$ and $\overrightarrow{OB} = \mathbf{b}$

Not drawn accurately

20 (a) Write vector \overrightarrow{AB} in terms of **a** and **b**.

AB = AO + OB = -a+b or b-a

Answer b-a (1 mark)

20 (b) The point *B* divides \overrightarrow{AC} in the ratio 2:3

Work out vector \overrightarrow{OC} in terms of **a** and **b**.

$$= b + \frac{3}{2} \overrightarrow{AB}$$

$$= b + \frac{3}{2}(b-a)$$

$$= b + \frac{3}{2}b - \frac{3}{2}a$$

$$=\frac{1}{2}(5b-3a)$$

Answer
$$\frac{1}{2}(5b-3a)$$
 (3 marks)

END OF QUESTIONS

